What Happened to the US Economy During the 1918 Influenza Pandemic? A View Through High-Frequency Data

> François R. Velde Federal Reserve Bank of Chicago

European Macro History Online Seminar 21 Apr 2020

▶ The views presented here do not necessarily reflect...

Disclaimers

- The views presented here do not necessarily reflect...
- This is not my century!

The 1918 Pandemic

- was until now the last deadly pandemic
 - 1st wave (spring 1918), virulent but not very deadly
 - 2d wave (autumn 1918), simultaneous in Europe and U.S.
 - 3d wave (winter 1919) in some places
- economic impact hard to trace, even in the richest countries
 - US: pre-NIPA, BLS and FRB data collection just beginning
 - timing makes reliance on annual data tricky
- small literature (for now...)
 - Barro, Ursúa, and Weng (2020): cross-country, annual data: big effects of pandemic
 - Brainerd and Siegler (2002): higher growth in more affected states after 1918
 - Correia, Luck, and Verner (2020): lower output, employment, bank balance sheets five years after
- my approach: US only, high-frequency data during the pandemic, supplemented with contemporaneous qualitative evidence
 - very old-school, à la Burns and Mitchell

Punchline

the recession of 1918–19 was of "exceptional brevity and moderate amplitude" (Burns and Mitchell, 1946, p. 109)

Mortality: Technicalities and Data Sources

- Only thirty states provided vital statistics at the time
- Collins et al. (1930): weekly data on 47 US cities
- no data whatsoever on infections/cases
 - rely on deaths
 - which deaths? pneumonia (all forms) and influenza (P&I)

Mortality: national level

Signature of the 1918 pandemic

Impact on population, labor force

	excess mortality							
	all a	ages 20–60						
	Jul 1918- Jun 1919	Jul 1919- Jun 1920	1918	1919	1920			
in thousands as % of population (103m)	516 0.50	72 0.07	300	65	52			
as % of 20-60 age group as % of labor force (39m)			0.56 0.77	0.12 0.17	0.10 0.13			

WWI draft: 4m men, casualties: 116,000

Data from 47 US cities

The second (main) wave

characteristics

- started in September 1918 in New England
- spread quickly, largely over by December 1918
- large variation in peak mortality
- in some places, a third wave

economic impact

- Iabor force (unusual "W shape" of mortality + virulence)
- non-pharmaceutical interventions (NPIs), at the city/state level
- "social distancing"
 - almost all cities closed schools, churches, entertainment, large gatherings (notable exception: NYC)
 - efforts to reduce congestion: staggered business hours in some places
- quarantine and isolation of infected individuals: less or no economic impact

Duration of closings

Looking for Impact: Estimates of annual GNP

Drilling down

- recession in 1920–21 very clear in aggregate data
- ▶ 1918? much less so (all three series show 1918 GNP higher than 1917)
- annual data too coarse given the timing of the epidemic
- there is lots of data
 - business people were obsessed with numbers and nowcasting
 - beginnings of data collection (BLS) and analysis (NBER, R.E.Stat.)
- next few slides: sequence of monthly series, with NBER "yellow stripes"

Industrial production

Autos

Retail

۲

Employment

Bank clearings

Business failures

۲

Business failures

Contemporary testimony

- sharp downturn due to labor shortages and fall in retail
- fast rebound as epidemic waned in November
- Armistice brought uncertainty about transition to peacetime economy, became main preoccupation
 - not clear that the 1918 recession is all due to epidemic

Summing up

- visual inspection: industrial output falls, retail much less, failures unaffected
- sharp contrast with the 1920–21 recession (these series do detect recessions!)

Summing up

Summing up

- visual inspection: industrial output falls, retail much less, failures unaffected
- sharp contrast with the 1920–21 recession (these series do detect recessions!)
- monthly bivariate VARs with national excess mortality: suggestive but not conclusive
- let's move to the cross-section

The Cross-Section

- two levels available: states/monthly (those with vital statistics), cities/weekly
 - cities also have NPIs
- task: find high-frequency series that match up
- next up:
 - coal industry (state)
 - data on banks (state and city, monthly)
 - business conditions, bank clearings (city)
 - business failures (weekly, aggregated to regional)

Coal industry

- US Fuel Administration set up when US entered WWI
- coordinate/monitor production
- Iots of data collection at mine level, in particular:
 - weekly reports on percentage of capacity unused and why

Coal output

()

Coal output

Coal: capacity unused and why

The 1918-19 recession in the coal industry

- first shock: labor shortage (epidemic?)
- second shock: "no market" i.e., lack of demand
- ► labor supply shock → demand shock?

Labor shortages in coal industry, by state

Epidemic and labor shortages

Banking data

- US has (a) national banks and (b) state-chartered banks (40/60 split)
- Data on (a) is consistent, 6 times/year
- local projection method: for $h = 0, \dots 6$

$$\Delta \log(ext{assets}_{i,t+h}) = \beta_h m_{i,t} + \sum_{k=1}^4 \gamma_k \Delta \log(ext{assets}_{i,t-k}) + a_i + b_t$$

 $\Delta \log(ext{loans}_{i,t+h}) = \beta_h m_{i,t} + \sum_{k=1}^4 \gamma_k \Delta \log(ext{loans}_{i,t-k}) + a_i + b_t$

Banks

Banks

- Bradstreet, a weekly publication, reported
 - bank clearings (a measure of volume of payments)
 - qualitative description of business conditions

AY, NOVEMBER 9, 1918

[PRICE, 10 CENTS

BRADSTREET COMPANY.

	TRADE AT A GLANCE.							
	Whole and	Retail	M/g and	Collections	Percente			
New York	Onlat	Owlet	Active	Pala	Valdemia shates, nonce talk managemen			
Boston	Oniet	Onist	Active	Pate	They mode trade onlet			
Barlington Vt	Pain	Rain	Active	Gend	Tobar anno quine			
Bridgenort	Pate	Pote	Acting	Riem	Toffware chatten			
Philadelphia	Gov	Cont	Active	Pala	Theory name has parting efforts			
Tamastown	Pala	Bala	Active	Cond	Peace news mas the fing outcost			
Buffalo	Good	Good	Active	Good	Additional government orders			
Pittsburgh	Quiet	Fair	Restricted	Fair	Trade still lags, but improves slightly			
Wheeling	Quieter	Pair	Active	Good	Peace talk slows trade			
Chicago	Good	Fair	Active	Good	Peace reports unsettle business			
Cincinnati	Fair	Slow	Active	Fair	Epidemic slackening			
Cleveland	Good	Dull	Active	Pair	Betail trade in clothing slack			
Hamilton, Ohio	. Fair	Fair	Active	Good	Buying conservative			
Lexington	Fair	Dull	Fairly active	Good	Influenza affecta industry			
Louisville	Good	Fair	Active	Good	Dry goods sales expected to slacken			
Detroit	Fair	Fair	Active	Good	Optimism potable despite peace talk			
Milwaukee	Good	Fair	Active	Fair	Peace talk breeds conservatism			
Terre Haute	Good	Slow	Active	Good	Rains help fall-sown crops			
Indianapolis	Good	Fair	Active	Good	Immediate business quieter; future trade			
Minneapolis	Good	Good	Active	Good	Retail trade exceeds year ago			
St. Paul	Fair	Fair	Active	Fair	Influenza curtails trade			
Duluth	Good	Quiet	Active	Fair				
Kansas City	. Fair	Fair	Active	Fair	Influenza cuts trade : wheat splendid			
84. Louis	Good	Fair	Active	Good	Bellef in lower prices affects trade			
Des Moines	Good	Good	Active	Good	Bains benefit wheat			
Dabaque	Good	Pair	Active	Good				
Lincoln	Good	Good	Active	Fair	Good rains help wheat			
Omaha	Fair	Better	Active	Good	Rains benefit wheat			
Baltimore	Good	Fair	Active	Good	Influenza abating; prices stronger			
Chaltanooga	Good	Pair	Pair	Good	Big wheat acreage ; floods damaging			
Memphis	Pair	Quiet	Pair	Pair	Peace talk restricts trade			
Nashville	Good	Good	Active	Good	October trade exceeded year ago			
Mobile	Good	Good	Pair	Good	Naval stores active and rising			
Montgomery	Good	Pair	Quiet	Good	Trade has conservative trend			
Atianta	Good	Good	Active	Fair	Feeling better			
New Orleans	. Good	Fair	Active	Good	Influenza abating ; good sugar crop			
Dallas	Good	Fair	Active	Good	Rains help crops, but dull retailing			
Charleston, S.C	Good	Fair	Active	Good	Influenza abating ; labor scarce ; ootton unpicked			
San Francisco	Fair	Fair	Active	Good	Prunes only short crop			
Pertland, Ore	Good	Quiet	Active	Good	Rains benefit wheat			
Seattle	Good	Fair	Active	Good	Influenza affects retailing			
Spokane	Good	Quiet	Quiet	Good	Restrictions affect retail trade			
Tacoma	Quiet	Quiet	Active	Good	Trade suspended Thursday			
Teronto	. Fair	Improved	Active	Slow	Epidemic abated ; retail trade better			
Montreal	Quiet	Quiet	Active	Good	Epidemic restricts trade			

City-level economic data

- Bradstreet, a weekly publication, reported
 - bank clearings (a measure of volume of payments)
 - qualitative description of business conditions
- convert to 1–5 scaled indicator of business conditions
- local projection method on two "shocks":
 - week in which epidemic threshold is reached (excess mortality twice median)
 - week in which closings are initiated

Local projections

early vs late movers: response to epidemic, closing shock

early vs late movers: response to epidemic, closing shock

6

Estimating impact of mortality and closings on economic activity: a model

use the basic SIR (susceptible-infected-recovered) model:

$$S_{t+1} = (1 - \beta_t I_t) S_t$$
$$I_{t+1} = (1 + \beta_t S_t - \gamma) I_t$$
$$R_{t+1} = R_t + \gamma I_t$$
$$D_t = \phi R_t$$

 \triangleright β_t can change with NPIs

add an equation for output (Alvarez, Argente, and Lippi, 2020):

$$Y_t = \theta_t (wS_t + w_i I_t) \tag{1}$$

only deaths are observable for us, so recast as

$$\begin{split} \Delta D_t &= (1 + \beta_{t-2} - \gamma) \, \Delta D_{t-1} - \frac{\beta_{t-2}}{\phi \gamma} \left(\Delta D_{t-1} \right)^2 - \frac{\beta_{t-2}}{\phi} D_{t-2} \Delta D_{t-1} \\ Y_t &= w_t - w_t D_t - \frac{w_t w_t^i}{\phi \gamma} \Delta D_{t+1} \end{split}$$

dependent variable:	ΔD_t		conditions		clearings	
ΔD_{t-1}	1.810***	1.994***				
$(\Delta D_{t-1})^2$	(0.144) -9.38e-05*** (1.8505)	(0.193) -9.99e-05*** (2.0405)				
$D_{t-2}\Delta D_{t-1}$	-4.37e-05***	-5.07e-05***				
$1_{t-2}\Delta D_{t-1}$	-0.667*** (0.160)	-0.655*** (0.246)				
$1_{t-2}(\Delta D_{t-1})^2$	7.59e-05***	(0.240) 7.07e-05***				
$1_{t-2}D_{t-2}\Delta D_{t-1}$	(1.87e-05) 1.25e-05	(2.19e-05) 1.69e-05 (1.20- 05)				
ΔD_{t+1}	(8.70e-00)	(1.29e-05)	-3.41e-05	-5.75e-05***	-1.13e-05**	-1.02e-05***
Dt			(2.70e-05) 3.70e-06	(2.21e-05) 1.01e-06 (4.24e.06)	(3.41e-00) 7.60e-07 (2.67e-06)	(3.50e-00) 1.01e-07 (1.20e.06)
$1_{t}\Delta D_{t+1}$			-2.89e-05	-4.91e-06	6.61e-06	(1.29e-00) 1.07e-05 (7.6406)
$1_t D_t$			-2.19e-05*	-5.55e-06	-2.35e-06	2.68e-06 (3.13e.06)
1 _t			0.0855	-0.0489	-0.0425	-0.136
conditions at $t-1$		-42.78	(0.278)	0.328***	(0.108)	(0.0900)
conditions at $t-2$		(07.85)		0.0934		
conditions at $t = 3$				-0.0247		
conditions at $t - 4$				0.0700		
log real clearings at $t-1$		-108.6		(0.0550)		0.394***
$\log \ {\rm real} \ {\rm clearings} \ {\rm at} \ t-2$		(100.0)				0.0791
log real clearings at $t-3$						-0.00795
log real clearings at $t-4$						0.162***
constant	-39.45 (93.73)	848.6 (1,036)	4.987*** (0.127)	2.767*** (0.341)	5.584*** (0.0472)	2.132*** (0.485)
observations number of cities	1,153 33	644 23	773 27	563 24	900 25	900 25

Table: Panel regressions of mortality ΔD , business conditions index, and log deflated bank clearings on leads and lags of mortality and cumulative mortality (D) and a dummy $1_{ct} = 1$ if businesses were closed during week t. Time and city fixed effects included; robust standard errors in parenthess. *** P < 0.01, ** P < 0.05, * P < 0.1.

Business failures in the cross-section

1918 and 2020

obviously different times

- urban/rural ratio 1 then, 5 now
- agriculture, manufacturing share of employment: 33%, 28% then; 2%, 8% now
- government: 1% GDP in 1914, size exploded with WWI, deficit 20% GDP, debt rose to 36% GDP
- Fed: essentially lending to household and banks so they can buy Federal debt

The Fed actually raised rates (slightly)

Financial conditions: stock market

Financial conditions: short-term rates

Conclusion

perhaps not the expected impact

- visible, but not as large as 1920-21 recession
- quick rebound, confirmed by qualitative commentary
- cross-section confirms, provides some evidence of NPIs effect on economy
- different context
 - Federal government is running a deficit of 20% GDP (and Fed is busy monetizing it)
 - Armistice comes as the closings end, focus on transition to peace
- little room for multiple equilibrium/coordination on bad outcome?
- still a useful case study:
 - a pandemic is not always a disaster
 - bad monetary policy can do a lot worse